

Roll No.:

--	--	--	--	--	--	--	--	--

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

Ap 1/ May 2024

B.E. /B.Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS,

ELECTRONICS AND COMMUNICATION ENGINEERING

Semester 04

EC5403 Electronic Circuits II

(Regulation 2019)

Time: 3hrs

Max. Marks: 100

CO1	Ability to design feedback amplifiers and analyze stabilization techniques
CO2	Ability to design Op-amps
CO3	Ability to analyze RC and LC oscillators
CO4	Ability to analyze tuned amplifiers and its stability conditions
CO5	Ability to analyze power amplifiers and DC-DC Converters

BL – Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART - A (10 x 2 = 20 Marks)

(Answer all Questions)

Q. No.	Questions	Marks	CO	BL
1	An amplifier has an open loop gain of $A=10^8$ and an open loop 3 dB bandwidth of 1500 Hz. Calculate the closed-loop bandwidth when the closed-loop gain is $A_f = 50$.	2	1	L3
2	A series-shunt feedback amplifier has a feedback network as shown in Fig. 1. If the open loop gain, input and impedance of the amplifier are 75 dB, 100 k Ω and 700 Ω respectively, find the closed loop gain in dB, input and output impedances.	2	1	L3
	Fig. 1			
3	Give the expression for the overall voltage gain of a two-stage operational amplifier.	2	2	L2
4	Draw the structure of a telescopic OPAMP with current mirror circuit and state its significance.	2	2	L2
5	The stability of the Colpitts oscillator is improved by modifying the feedback network (having $C_1 = 0.1 \mu\text{F}$ and $C_2 = 1 \mu\text{F}$) through the addition of a third capacitor of magnitude 100 μF in series with inductor. Suggest a suitable value of inductor to sustain the oscillations at 100 kHz.	2	3	L3
6	Design a Wien bridge oscillator that generates sinusoidal signal at 6.5 kHz. Assume identical lead-lag network with $R_1 = R_2 = 3 \text{ k}\Omega$ and $C_1 = C_2$.	2	3	L3
7	A tank circuit is constructed using 100 pF Capacitor and 100 μH inductor. If the coil has a loss resistance of 5 Ω , determine the resonant frequency and circuit impedance at resonance.	2	4	L3

8	Consider the design of an IF amplifier for an FM radio receiver using four synchronously tuned amplifier stages. The 3 dB bandwidth of each stage is 400 kHz. Determine the overall bandwidth of the tuned amplifier.	2	4	L3
9	"The conversion efficiency of a transformer coupled Class A amplifier is 50%" – Justify with relevant formulations.	2	5	L2
10	Evaluate the duty cycle and average output voltage of a step-up converter with $T_{ON} = 1.2$ ms, $T_{OFF} = 0.5$ ms and average input voltage of 10 V.	2	5	L3

PART- B (5x 13=65Marks)

Q. No.	Questions	Marks	CO	BL
11 (a)	<p>Identify the feedback topology and estimate the closed loop gain, input and output impedances of the circuit shown in Fig. 2. The transistor parameters are $h_{fe} = 100$, $V_{BE(on)} = 0.7$ V, and $V_A = \infty$.</p>	13	1	L4
11 (b)	<p>OR</p> <p>A feedback current amplifier constructed using NMOS transistors is described in Fig. 3. Calculate the following if the transistors are sized so that at $I_D = 0.2$ mA they operate at $V_{ov} = 0.2$ V. Both the devices have $V_t = 0.5$ V and $V_A = 10$ V.</p> <ol style="list-style-type: none"> If I_s has zero dc component, show that both Q1 and Q2 are operating at $I_D = 0.2$ mA. What is the dc voltage at the input? Find g_m and r_o for each of Q1 and Q2 Find the A circuit and the value of R_i, A and R_o. Find the value of β. Find $A\beta$ and A_f. Find R_{in} and R_{out} 	13	1	L4

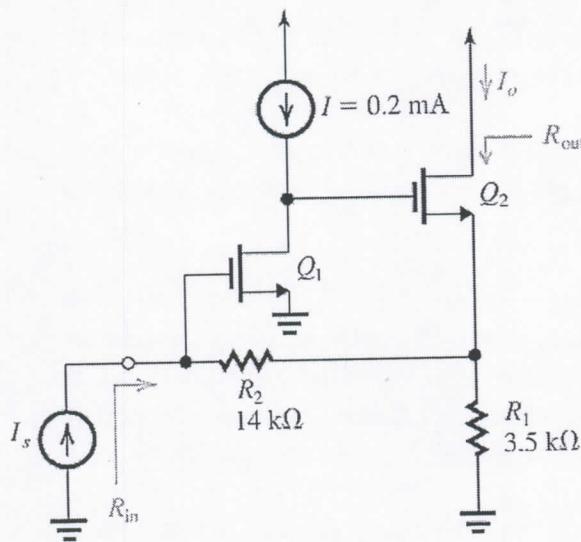


Fig. 3

12 (a) Design a fully differential telescopic operational amplifier with voltage gain 60 dB using the following specifications:

Power supply voltage: 3 V

Peak-to-peak differential output voltage swing: 3 V

Power dissipation: 10 mW

Assume the transistor parameters $\mu_n C_{ox} = 60 \mu A/V^2$, $\mu_p C_{ox} = 30 \mu A/V^2$, $\lambda_n = 0.1 V^{-1}$, $\lambda_p = 0.2 V^{-1}$ (for an effective channel length of 0.5 μm), $\gamma = 0$, and $V_{THN} = |V_{THP}| = 0.7 V$

Also, suggest suitable modifications to the design to tweak the gain of the designed amplifier to 70 dB.

13 2 L4

OR

12 (b) With a neat circuit diagram analyze the operation of a two-stage CMOS based Operational Amplifier in terms of input common mode range, output swing and overall DC voltage gain.

13 2 L4

13 (a) Describe the construction and operation of an RC phase shift oscillator. Deduce the condition for minimum transistor h_{fe} to obtain sustained oscillations.

13 3 L2

OR

13 (b) (i) With a neat circuit, explain the operation of a Hartley oscillator. Using necessary equivalent circuit, determine the frequency of oscillation and the condition for sustained oscillations.

9+4 3 L2

(ii) A Colpitt oscillator has the following parameters. $L = 5 \mu H$, $C_1 = C_2 = 10 nF$. Determine its oscillation frequency. Also, find the change in oscillation frequency when the inductor is varied from $L = 5 \mu H$ to $L = 15 \mu H$.

14 (a) (i) A single-tuned amplifier is used to amplify the modulated RF carrier of 600 kHz and bandwidth of 15 kHz. The amplifier without tank circuit has a total output resistance of 20 k Ω and

8+5 4 L3

	<p>output capacitance of 50 pF. Determine the value of the inductance and capacitance of the tuned circuit required to make the amplifier functional with the specification described above.</p> <p>(ii) With necessary mathematical formulations, obtain the bandwidth of a single-tuned amplifier with N cascaded sections.</p>			
--	--	--	--	--

OR

14 (b)	<p>(i) Design and evaluate the results of a FET-based single-tuned amplifier with $g_m=5\text{mA/V}$, $r_o=10\text{k}\Omega$, $f_0=1\text{MHz}$, centre frequency gain=-10V/V and 3dB bandwidth=10kHz. Assume c_0 is negligible. Also, evaluate the Q factor. Is the calculated Q factor suitable for communication applications? Justify your answer.</p> <p>(ii) With any two methods, analyze how the stability is achieved in tuned amplifiers using neutralization technique.</p>	7+6	4	L3
15 (a)	<p>(i) Analyze the Class B power amplifier stage in terms of load line characteristics, power dissipation and power conversion efficiency.</p> <p>(ii) For the class AB output stage shown in Fig. 4, consider the case of matched Q_1 and Q_2, and matched Q_N and Q_P. If the quiescent current $I_Q=1\text{mA}$ and $I_{BIAS}=0.2\text{ mA}$, find the (W/L) for each of the transistors Q_1, Q_2, Q_N, Q_P so that in the quiescent state, each transistor operates at an overdrive voltage of 0.2V. Let $V_{DD} = V_{SS} = 2.5\text{ V}$, $\mu_nC_{ox} = 250\text{ }\mu\text{A/V}^2$, $\mu_pC_{ox} = 100\text{ }\mu\text{A/V}^2$, $V_{THN} = V_{THP} = 0.5\text{ V}$. Also find V_{GG}.</p>	9+4	5	L3

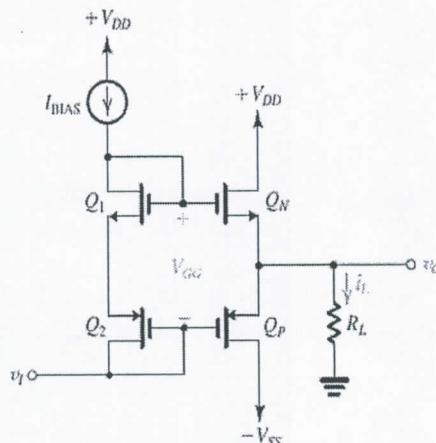


Fig. 4

15 (b)	<p>(i) Using relevant switching waveforms, describe the construction and operation of a BUCK converter.</p> <p>(ii) The buck converter with MOS transistor switching has an input voltage of 10 V. If the switching frequency is 1 kHz and the required average output voltage is 5 V, determine the duty cycle, output inductance and capacitance. Assume the maximum ripple voltage and ripple currents are 20 mV and 0.2 mA respectively.</p>	10+3	5	L3
--------	--	------	---	----

PART- C (1x 15=15Marks)
(Q.No.16 is compulsory)

Q. No.	Questions	Marks	CO	BL
16.	A folded cascode operational amplifier with PMOS load has to be designed to offer a voltage gain of 2000. The specifications of the operational amplifier are: DC power supply voltage of 3 V, differential output swing of 2.4 V, power dissipation of 6 mW. The device parameters are: $\mu_n C_{ox} = 60 \mu A/V^2$, $\mu_p C_{ox} = 30 \mu A/V^2$, $\lambda_n = 0.1 V^{-1}$, $\lambda_p = 0.2 V^{-1}$ (for an effective channel length of 500 nm), $\gamma = 0$, and $V_{THN} = 0.3 V$, $V_{THP} = -0.35 V$. Also, find the necessary bias voltages for the NMOS and PMOS pair.	15	2	L6

